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for various entry conditions. Copyright @ 1996 Elsevier Science Ltd. 

Solutions of linear problems involving the entry of thin bodies into fluids exhibit a characteristic feature, 
in that certain physical quantities relating to the disturbed flow diverge both in the neighbourhood of 
the curves in which the body intersects the free surface of the fluid and in the neighbourhood of the 
sharp nose of the body (in the two-dimensional and axisymmetric problems [1-3]) or of the sharp leading 
edges [4, 5] submerged in the fluid. Uniformly valid solutions in the neighbourhood of the apex of a 
wedge or a cone in an acoustic setting were obtained in [6, 7]. 

The domain of inhomogeneity of the exterior (linear) solution in the three-dimensional problem in 
a "tube" sheathing the neighbourhood of the sharp leading edge, with small transverse scales. The inner 
problem reduces to solving a two-dimensional Laplace equation for the inner potential in a plane normal 
to the leading edge at some point of the latter, on the assumption that the Riemann-Hilbert condition 
holds on the faces of the "wedge" formed by the edge in the neighbourhood of the point. Examples 
are presented of uniformly valid solutions for various conditions of entry of thin conical bodies with a 
rhomboid transver~.e profile, moving at a constant velocity normal to the free surface of the fluid, and 
formulae are given for the pressure at the leading edges. Attention is paid to the special features of 
the construction of a uniformly valid solution for the entry of a thin cyclically-symmetric body (CSB)---- 
a sheaf of an integral number of identical thin three-dimensional bodies (cycles) with sharp leading 
edges, symmetrically arranged round a longitudinal axis. The pressure at the edge of the CSB in domains 
of mutual influence of the cycles is determined by the sum of the pressure at the edge, evaluated in the 
main problem of the entry of a single cycle by using a uniformly valid solution and the non-linear 
Cauchy-Lagrange integral, and the pressure perturbation introduced at the point in question by the 
other cycles and evaluated on the basis of the linear solution. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M .  C O N S T R U C T I O N  O F  A 
U N I F O R M L Y  V A L I D  S O L U T I O N  

Consider a thin l:hree-dimensional body penetrating a fluid-filled half-plane, at a velocity Vo(t ) whose 
direction is assumed (for simplicity) to be that of the inner normal to the free surface of the fluid. Let 
us assume that the body shape and the entry conditions guarantee that the flow around the body is not 
detached, and that a solution is known of the corresponding linear problem for the potential of the 
perturbed fluid flow; we shall henceforth refer to this solution as the outer solution 9e(xl,Yx, zl, t), where 
xl ,yl ,  zl is an absolute Cartesian system of coordinates attached to the free surface of the undisturbed 
fluid, with xl axis in the direction of the body's velocity Vo(t ). 

We will write the wave equation, the Cauchy-Lagrange integral and the boundary condition on the 
body; these will be needed to construct a uniformly valid solution in the neighbourhood of the leading 
edges of the body 

(32(0 = c2Acp (1.1) 
0t 2 
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P-P9 + =o 

Po 
(1.2) 

~nj = (nl' v°(t)) (1.3) 

where c,po and P0 are the speed of sound, the pressure and density of the undisturbed fluid, respectively, 
nl is the unit vector of the outward normal to the body surface. In thin bodies, (nl, v0(t)) = O(e), where 
e "~ 1 is a small parameter characterizing the relative thickness of the body. The potential of perturbed 
fluid flow is also of the order of ~, and its principal term tPc is a solution of a linear initial-boundary- 
value problem. 

Solutions of linear three-dimensional problems of thin bodies entering a fluid [4, 5], for velocity and 
pressure determined from the linearized Cauchy-Lagrange integral (1.2), have singularities of the same 
logarithmic type as solutions for the entry of thin wedges and cones [1-3] in the neighbourhood of the 
apex, that is, of the type --eln r, where r is the distance from the leading edge of the body, measured in 
a plane normal to it at some point. Thus, the non-uniformity domain [8[ in which the outer (linear) 
solution of the problem tPc becomes meaningless is of characteristic scale r - e -1/~. Cases in which the 
non-uniformity domain of the outer solution is not a "tube" of radius r surrounding the sharp leading 
edge but a "sphere" of the same radius about a certain point will be specified later. 

To construct an inner solution, we change first to a Cartesian system of coordinates attached to the 
body. The appropriate form of Eq. (1.1) is 

1 ~2tp [, ..2~2q ~ , c~2q 0 c32qO+2u0 i92tP Oo Oq~ 
 a-Tr=v - c 

t 

X=Xl-] °o(t)dt, Y=Yl, Z=Zl , M=U°(t----2) 
o c 

(1.4) 

To simplify matters, let us assume that the sharp leading edge of the body (or one such edge) is a 
plane twice-differentiable curve in the plane z = 0, and that one of the two surfaces of the body which 
intersect in that edge are defined in its neighbourhood by the equation el(x, y) - z = 0. Thus, f(x, y) = 
0, z = 0, is the equation of the leading edge. 

We now change to an orthogonal eurvilinear system of coordinates attached to the leading edge 

n = f ( x , y ) ,  s = f l ( x , y  ), z = z  (1.5) 

where s may be, for example, the constant of the first integral of the equation dy/dx = fr/fx. Equation 
(1.4) and boundary condition (1.3) may be written for the selected part of the body surface as 

t ,  -J -7 + 

1 i92~0 + 2 u0 ( a2~0 + ,. 32tO ) + 60 
(1.6) 

~qo 
(1.7) 

In accordance with the above estimate for the scale of the neighbourhood of the leading edge where 
the outer (linear) solution becomes applicable, we introduce inner variables 

n i = n e  Ire, z i = z e  Ire (1.8) 



The problem of a thin three-dimensional body entering a compressible fluid 601 

Then, assuming the necessary restrictions on the orders of magnitude of the derivatives off(x,y) and 
f l(x,  y) in the neighbc,urhood of the leading edges, we obtain the following relations for the principal 
terms (1.6) and (1.7) 

02 ",2 
[ I - M 2 ( t , s ) ] A 2 ( s ) ~ + ~ = O  

Oni 8zi 
(1.9) 

eA2(s)/hp; &Pi = ~fx(s)Uo(t)e-Ut (1.10) 
0n i 0Zi 

where M,,(t, s) = Vo(t)lfx(s) [/(cA(s)) is the Math number of the velocity component normal to the leading 
edge at some points, A 2 (s) = f 2  + f~  w h e n f ( x , y )  = 0 and (Pi is the potential of the inner solution. 

Since linear solutions of problems of thin three-dimensional bodies entering a fluid have logarithmic 
singularities in the neighbourhood of the leading edges at subsonic velocities of the latter (M,, < 1) 
[4, 5], it follows that (1.9) is an equation of the elliptic type. Introducing the new variables 

fx tl e-Ilt?l ~,=-~ o i+Ov 

( m = 4 l - M 2 ( t , s ) )  

n i = Amna (1.11) 

we obtain the following expressions for (1.9) and (1.10) 

02Oi 4- 020`. - 
0n2 8z-~i - 0  (1.12) 

A 30, 30 i 
e - -  =0  (1.13) 

m On a OZi 

Thus, the inner problem has been reduced to solving a two-dimensional Laplace equation (1.12) for 
the potential • i in the plane normal to the leading edge of the body at some point, subject to the 
Riemann-Hilbert condition (1.13) [9] on one side of the "wedge": zi = eAmna (we have omitted terms 
of order e 2 relative to unity), which is the image in the inner domain of the curve in which the surface 
z = if(x, y) intersects the aforementioned normal plane. The variables t and s are the parameters of 
the inner problem. I f the plane z = 0 is the plane of symmetry of the body in a small neighbourhood 
of the leading edge, one must assume, in addition to condition (1.13), the boundary condition ~Y~i]~'gi 
= 0 forzi = O, nil < 0. In the most general case, when the surface that forms the leading edge together 
with the aforementioned intersection is defined in a neighbourhood of the edge by the equation 
z = -e f t (x ,  y), one nmst add a boundary condition on the second side of the "wedge" zi = -e lAmnil  

e I - - ~  + ~ = 0 (1.14) 
m On a Ozi 

The solution of Eq. (1.12) is conveniently presented, as in [7], in polar coordinates 

r/=4n~l +z~, tg0i = z i / n i l  (1.15) 

but in a form involving two arbitrary functions of the variables t and s, as well as an arbitrary parameter 
to satisfy boundary conditions (1.13) and (1.14) 

¢~i = a(t ,  $)r/k co$[k(0i - 0[)] + b(t, s) (1.16) 

Substituting (1.16) into (1.13) and (1.14) for 0i = earn and 0i = 2n - clam, respectively, we obtain 

(e+el)A rl + ( e .  el)Am], e (k -  l) (1.17) 
k = l +  2gin L 2n .] c~=2nk(e+e l )  
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By (1.1), ~i is the potential of relative motion of the fluid for the inner problem; hence it is easy to 
find the streamlinemthe ray 0i0 of the polar system of coordinates ri, 0r---that enters the critical point 
on the leading edge. In the principal approximation, we have 

0i0 = (¢ - e I )A / (2m) (1.18) 

Taking into account the formulae for changing to inner variables (1.4), (1.5), (1.8) and (1.11), we 
conclude that the position of the critical streamline (1.18) depends not only on the linear angles between 
the tangent planes to the surfaces whose intersection forms the leading edge at the point in question 
and the plane z = 0, but also on the Math number of the velocity normal to the leading edge. 

The functions a(t, s) and b(t, s) in (1.16) are found from the condition that the outer limit of the 
inner solution must match the inner limit of the outer solution [8] 

[~Pi], = [~°, ]i (1.19) 

In the problem being treated here these functions are more conveniently determined successively, 
first matching the velocity components of the inner and outer solutions, and then the potentials. After 
finding the functions a(t, s) and b(t, s), one constructs a uniformly valid composite solution of the problem 
using the formula 

~o c = ~o, - [~o, ]i + ~ i  (1.20) 

2. E X A M P L E S  A N D  R E M A R K S  

Let us consider the problem of a cyclically-symmetric thin three-dimensional body with plane facets and an even 
number of cycles, entering a compressible fluid normal to its surface at a constant velocity v0 [5]. The general linear 
solution of this problem is an angular superposition of solutions of a similar linear problem for a conical body with 
a thin rhomboid profile in cross-section (Fig. 1). 

Figure 2 shows the existence domains of different entry conditions for a thin conical body with rhomboid profile, 
with different configurations of the acoustic waves, in the plane of the parameters m = vo/c and 13. The dashed 
curves are described by the equations M tg13 = 1 (curve/) and M sin 13 = 1 (curve 2). Domain 1, situated below 
the straight line M = 1 and curve 1, corresponds to entirely subsonic entry of the body; domain 2, situated below 
the line M = 1 and above curve 1, corresponds to supersonic motion of the profile of the leading edge of the body 
along the free surface of the fluid; domain 3, bounded by the line M = 1 and by curves 1 and 2, corresponds to 

M \ \ \  

• I ~¢tt4 ~ ,  O ~r /~ / !  4 1 2  

Fig. 1. Fig. 2. 
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entirely subsonic motion of the leading edge (Mh -- M sin [~ < 1) at supersonic velocities of the body nose and the 
profile of the leading edge along the free surface; domain 4, situated above the line M = 1 and below curve 1, 
corresponds to supersonic motion of the nose; domain 5, situated above curve 2, represents a supersonic mode of 
motion of the ieading, cxlge of the body (Mn > 1). The solid curves 3-5 correspond to constant velocities of the 
leading edges: M~ = ~/2/2, 0.5 and 0.25. 

According to [5], the linear (outer) solutions of problems relating to the entry of the thin body that correspond 
to values of M and 13 in domains 1--4 (Fig. 2, below curve 2) involve logarithmic singularities at the leading edges. 

Here are some illusWative constructions of uniformly valid solutions for regimes 2--4 in domains of conical motion 
of the disturbed fluid. 

Let M tg 13 > 1. The potential of the outer solution in the domain between a conical wave, with its vertex at a 
moving point of the inlersection of the leading edge and the free surface of the liquid, a spherical wave and the 
free surface (Fig. 2, domains 2, 3) may be written as follows (see [5]): 

! 

Oe =-~ F(Xl,Yl,Zl,t)dt, t>tl 
tl 

F(xl,Yl,Zl,l)= ~-~sin~ln~-[, h= tg[~ 

Cr±=[~h2(vot-yictg~)2-(x?+z2)'t'gxi]2+h2z? 

, ,=  c;g013(yl+3/M2tg2[3-1 ~ ) ,  g - - s ' ~ n ~ l - M 2 s i n 2 l  3 

(2.1) 

The facet of the body (Fig. 1) in the first quadrant of the xl, Yl, zl, system is described in variables x, y, z (1.4) 
by the function 

z = -e(xsin 13 + ycosl3) 

Then, according to Section 1, the leading edge of the body is defined by the equationf(x, y) m -(xsin 13 + ycos 
13) = 0, and the variables n and s of the system of coordinates attached to the leading edge are defined by 

n = - x ,  sin 13 - Yt cos13 + v  0 t sin 13 

s = x I cosl~- y, sinl3 +v0t sinl~tgl~ (2.2) 

(the origin here is situated at the point of intersection of the leading edge and the free surface of the fluid), and 
the functions Mn(t, s) and A(s) are constants 

M,, = Msin13, A = I  (2.3) 

Omitting the laborious details, we will write the inner limits for the velocity components of the outer solution, 
projected onto the n, s, z axes, and the outer potential q~e 

r,q~ t 

[vz¢ ]i : co° sinl~ I ~  + arctg( n---31 (2.6) 
t "  \ m Z / J  

[gt ]i = n[v. ]i + 4 vse ]i + zivte ]i (2.7) 

ql = g/h, q2 =h2(g +h)-2qt 

As can be seen frolr. (2.4)-(2.6), when the point approaches the leading edge ats = const, the velocity component 
v,~ involves a logarithmic singularity, as is the case in the perturbation of the pressure in the linear solution 
[5] (see (2.1), 3gJ&), the component vse is continuous and v~e depends on the direct of approach to the leading 
edge. 
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When the body profile is symmetric about the plane z = 0 (Fig. 1) and A = 1 (see (2.3)), the parameters of the 
inner solution (1.17) become 

k = l + ~ ( l + t m ' ~  a = ~  k - I  (2.8) ~,nk n )  ' k 

and the potential of the inner solution (1.11) is 

q~i = -u0nsinl3- a(t,s)ri t cos[k(0i - 1~)]+ b(t,s) (2.9) 

Taking (1.8), (1.11), (1.15) and (2.8) into consideration, we can write the potential of the inner solution, 
apart from terms of order e2 relative to unity, in the form 

• ° " " '  - k )  q~i = -v0nsln[~+ ~ e x p  + n'gx 

xr, + 4 - ' ~ t  Inq, + rr"Z (~+arctg --~-,-n )]+b(t,s) 
I. ~z F~m ~.n \ i mZ / J 

X=[(n/sin~l)2 2 2 ]¢/(2m'n) 
+qlz  I 

(2.1o) 

To determine the function a(t, s), we find the outer limit [v~/]~ of the velocity component v,a of the inner solution. 
Expressing a(t, s) as a serk~ in powers of c: a(t, s) = a0 + eal + . . . .  and equating [v,u']e and [vie]/(see (2.4)), we obtain 

(l l) 
ao =vomsin[$exp e zo.n 

a I = -ao ~I + m + ini2ql scOs[~ + sin 2 [31nq2 } 
xml, 7t " -- 

(2.11) 

Using (2.11) to determine the outer limit of the potential of the inner solution (2.10), we deduce from (1.19) that 

b ( t , s )  = ~o0 sinl3cosl ~ slnq 2 (2.12) 
nql 

Finally, the expression for the potential of the inner solution is 

q~i = vonsin[3 scos~sinl3 ~, scosp,/ j 

(2.13) 

It can be verified that [v~]e and [vale are identical with (2.5) and (2.6), respectively. 
The composite solution for the potential tPc is determined from formula (1.20), using (2.1), (2.7) and (2.13). 

Analysis of that solution Shows that the velocity components of the uniformly valid solution are continuous at the 
leading edge. 

Let us determine the pressure at the leading edge of a thin conical body with rhomboid profile (Fig. 1) when 
M tg [3 > 1, in the domain of conical flow (Fig. 2, domains 2 and 3). We will use the Cauchy-Lagrange integral 
(1.2), with tp replaced by q~c. (1.20). Omitting the algebra, we find the reduced pressure coefficient at n = z = 0, 
calculating the velocity head q for a velocity normal to the leading edge 

_ ~ [ : ff--~-~i/q,-I ] Cpo'=--~E(Cpo-l)=sin~ln ( l + q l ) { J I - q i '  J J 

Cpo = (p-po)L.z=o q-t, q = lpou2 sin 2 [3 

(2.14) 
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As I~ --* n/2 the solu'tion of the linear problem for a thin body with rhomboid profile entering a compressible 
fluid tends to the corresponding solution of the plane problem----entry of a thin wedge [5]. As analysis of formula 
(2.14) shows, the expre~ion for the pressure at the edge obtained from the Cauchy-Lagrange integral using the 
uniformly valid solution is identical, as 13 --* r,/2 for small M values, with the corresponding formula for the pressure 
at the wedge apex [6]. 

Omitting the reasoning and the algebra, we write the expression for the reduced pressure coefficient at the edge 
of a thin body with rhomboid profile in the conical flow domain, valid in a neighbourhood of the body nose for 
entry conditions M > 1 (Fig. 2, domains 3 and 4) 

t '~h = - tg (2.15) 

The question arises as to whether a uniformly valid solution constructed for a single thin body (Fig. 1) holds for 
a cyclically-symmetric body (CSB); in particular, how does one determine the pressure at the leading edge? 

Obviously, in an entry regime M ~ > 1, there will always be a domain of the governing parameters and a finite 
range ofs values in which the conical flow domain realized in the neighbourhood of a point where the leading edge 
of one of the constituent cycles of the body intersects the free surface of the fluid is not affected by the other cycles. 

Consequently, a uniformly valid solution constructed for that domain in the entry problem for a single thin body 
(Figs 1 and 2, domain~ 2 and 3) may be used for a CSB also. 

In other flow doma:ins, however, containing a subsonic leading edge (M, < 1), the construction of a uniformly 
valid solution must allow for the combined influence of the constituent cycles. This is particularly true in the conical 
domain of flow around the nose of the body a tM > 1 (Fig. 2, domains 3 and 4), and thus formula (2.15) must be 
corrected raking an appropriate number of constituent cycles of the body into account. 

We shall consider the main features involved in constructing a uniformly valid solution for the entry of a thin 
CSB. Now, the outer Ilinear) solution in the neighbourhood of any of the leading edges is a superlxnition of the 
main solution generated by the cycle to which that edge belongs, which involves a logarithmic singularity at 
the edge, and of the effects of the other cycles, which do not contribute singularities to the general solution in the 
neighbourhood of the edge. It follows that, for example, the inner asymptotic behaviour of the outer solution for 
the velocity compone:at v,: [v~]i may be written as 

(2.16) 

where [v°]i is the intter limit of the outer solution for the corresponding velocity component in the main linear 
problem, corresponding to entry of a single cycle (for example, that illustrated in Fig. 1) and c(t, s) is a function 
describing the effect of the other cycles. 

According to (2.16), the formula for the potential in the neighbourhood of the leading edge in the general ease 
will be 

- -  0 tcpc ] i - [ q J e ] i + e c ( t , s ) n + e c l ( t , s ) z + t d ( t , s ) + O ( F . . e  -2It ) (2.17) 

where el(t, s) and d(~!, s) are certain functions that describe the effect of the other cycles. Because of the cyclic 
symmetry of the body, el(t, s) = 0, since disturbances arriving at the plane z = 0 from the other cycles cancel out, 

Or so that tF~(z = 0) - v°'(z = 0) = 0. Accordingly, analysis of a formulae (1.19), (2.9) and (2.17) shows that the function 
c(t, s) occurs in the coefficient ai (2.11) of the series for the function a(t, s), and the function d(t, s) similarly for 
the function b(t, s) (2.9). We may therefore conclude, in view of (1.2), (1.20), (2.8), (2.9) and (2.17), that the pressure 
at the edge will depend, apart from terms of the order of gz, only on the derivative of d(t, s) with respect to time, 
which occurs in the formula additively, i.e. in the same way as in the linear theory for evaluating the pressure using 
the linearized Cauchy-Lagrange integral. 

Thus, in order to determine the pressure at the leading edge of the CSB in domains where the cycles influence 
one another, it will suffice to sum up the pressure at the edge evaluated in the principal problem, using the uniformly 
valid solution and tl~e non-linear Cauehy-Lagrange integral, and the pressure perturbations contributed by the 
other cycles at the l~int, evaluated using the linear solution. 

Figure 3 shows the results of computations of the normalized reduced pressure coefficient c v = ~p0/ln 2 using 
formulae (2.14) (the solid curves) and (2.15) (the dashed curves). This normalization is necessary bemuse, in the 
first case, corresponding to the pressure at the edge in the conical flow domain when M tgl3 > 1, we have ~p0 = In 2 
as I~ ~ rj2 and M -~. 0. The numbers on the curves correspond to the values of 10 x M,. 

The dash--dot euree A limiting the solid curves on the left is the image of curve 1 in Fig. 2 (M tgl] = 1). The 
dash--dot curve B demarcates domains representing subsonic motion of the body (M < 1, to the right of the curve) 
arid supersonic motion. When Mn > ~/2/2 (see Fig. 2, domain 3) the two domains of conical flow considered previously 
occur in the neighb3urhood of the leading edge. In these motions, as we have calculated, the pressure at the 
edge in the neighbourhood of the nose exceeds the pressure in the neighbourhood of the free surface of the fluid 
(Fig. 3, compare the ordinates of the dashed and solid curves 8 and 9 for identical values of the angle 13). 
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It should be noted, however, that the solution constructed for M > 1 in the conical flow domain at the nose 
becomes inapplicable as M ~ 1. This is indicated by the logarithmic singularity in formula (2.15) (see also the 
dashed curves in Fig. 3). Although the body entering the fluid is by assumption thin, the angles of deflection of 
the flow are finite, and when M .~ 1 the wave must become detached from the tip. This indicates that the acoustic 
model is no longer valid in this limiting case. 

A similar situation occurs in the solution for the conical flow domain in the neighbourhood of the free surface 
of the fluid. Although the theory gives finite values for the pressure at the leading edge when M tg I~ > 0 (2.14) 
(Fig. 3, the solid curves in the neighbourhood of the dash-dot curveA), the acoustical model is inapplicable here 
also. In other words, both in the first case and in the second, given e., the conical flow domains, bounded by spherical 
and conical waves (Fig. 2, domains 2--4), in which the solutions we have constructed are usable are limited in size. 
In addition, the solution for a conical flow domain in the case M tg I~ > 1 cannot be extended to the whole leading 
edge from the spherical wave to the free surface (Fig. 2, domains 2 and 3). As s ---) 0 (s = O(e-l/t)) the points on 
the leading edge fall within the neighbourhood of the curve in which the body surface intersects the free surface 
of the liquid, where the solution must be constructed taking the shape of the free surface into account. 

To conclude, we observe that the technique evolved here for constructing uniformly valid solutions for the problem 
of a thin three-dimensional body entering a fluid (Section 1) presupposes that the leading edges are sufficiently 
smooth. In particular, it is not applicable when the leading edge has a sharp bend. Thus, in subsonic motion (Fig. 
2, domain 1), the characteristics of the linear (outer) solution of the problem have a logarithmic singularity at the 
body nose when it is approached by a point of the field of disturbed flow in any direction. This indicates that the 
non-uniformity domain of the outer solution is not in this ease a "tube", as it is at the leading edge, but a "sphere" 
of characteristic radius r = O(e-I/E). Therefore, the inner variables in this case must be introduced for all three 
Cartesian coordinatesx, y, z (1.4), (1.8), which leads to an inner problem for a three-dimensional Laplace equation 
with appropriate boundary conditions at the body surface in the neighbourhood of the nose. 
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